Burgers' equation

[XFB] Konu Bilgileri

Konu Hakkında Merhaba, tarihinde Wiki kategorisinde News tarafından oluşturulan Burgers' equation başlıklı konuyu okuyorsunuz. Bu konu şimdiye dek 1 kez görüntülenmiş, 0 yorum ve 0 tepki puanı almıştır...
Kategori Adı Wiki
Konu Başlığı Burgers' equation
Konbuyu başlatan News
Başlangıç tarihi
Cevaplar
Görüntüleme
İlk mesaj tepki puanı
Son Mesaj Yazan News

News

Moderator
Top Poster Of Month
Credits
0
← Previous revision
Revision as of 12:04, 8 May 2024
Line 119:Line 119:
==Other forms====Other forms==
===Multi-dimensional Burgers' equation===
In two or more dimensions, the Burgers' equation becomes
⚫:<math>\frac{\partial u}{\partial t} + u \cdot \nabla u = \nu \nabla^2 u.</math>
===Generalized Burgers' equation======Generalized Burgers' equation===
The generalized Burgers' equation extends the quasilinear convective to more generalized form, i.e.,The generalized Burgers' equation extends the quasilinear convective to more generalized form, i.e.,
⚫<math display="block">\frac{\partial u}{\partial t} + c(u) \frac{\partial u}{\partial x} = \nu\frac{\partial^2 u}{\partial x^2}.</math>
⚫:<math>\frac{\partial u}{\partial t} + c(u) \frac{\partial u}{\partial x} = \nu\frac{\partial^2 u}{\partial x^2}.</math>
where <math>c(u)</math> is any arbitrary function of u. The inviscid <math>\nu=0</math> equation is still a quasilinear hyperbolic equation for <math>c(u)>0</math> and its solution can be constructed using [[method of characteristics]] as before.<ref>Courant, R., & Hilbert, D. Methods of Mathematical Physics. Vol. II.</ref>where <math>c(u)</math> is any arbitrary function of u. The inviscid <math>\nu=0</math> equation is still a quasilinear hyperbolic equation for <math>c(u)>0</math> and its solution can be constructed using [[method of characteristics]] as before.<ref>Courant, R., & Hilbert, D. Methods of Mathematical Physics. Vol. II.</ref>
Line 129:Line 136:
Added space-time noise <math>\eta(x,t) = \dot W(x,t)</math>, where <math>W</math> is an <math>L^2(\mathbb R)</math> [[Wiener process]], forms a stochastic Burgers' equation<ref>{{cite journal |first1=W. |last1=Wang |first2=A. J. |last2=Roberts | title=Diffusion Approximation for Self-similarity of Stochastic Advection in Burgers' Equation |journal=Communications in Mathematical Physics |volume=333 |pages=1287–1316 |year=2015 |issue=3 |doi=10.1007/s00220-014-2117-7 |arxiv=1203.0463 |bibcode=2015CMaPh.333.1287W |s2cid=119650369 }}</ref>Added space-time noise <math>\eta(x,t) = \dot W(x,t)</math>, where <math>W</math> is an <math>L^2(\mathbb R)</math> [[Wiener process]], forms a stochastic Burgers' equation<ref>{{cite journal |first1=W. |last1=Wang |first2=A. J. |last2=Roberts | title=Diffusion Approximation for Self-similarity of Stochastic Advection in Burgers' Equation |journal=Communications in Mathematical Physics |volume=333 |pages=1287–1316 |year=2015 |issue=3 |doi=10.1007/s00220-014-2117-7 |arxiv=1203.0463 |bibcode=2015CMaPh.333.1287W |s2cid=119650369 }}</ref>
⚫<math display="block">\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}-\lambda\frac{\partial\eta}{\partial x}.</math>
:<math>\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}-\lambda\frac{\partial\eta}{\partial x}.</math>
This [[stochastic PDE]] is the one-dimensional version of [[Kardar–Parisi–Zhang equation]] in a field <math>h(x,t)</math> upon substituting <math>u(x,t)=-\lambda\partial h/\partial x</math>.This [[stochastic PDE]] is the one-dimensional version of [[Kardar–Parisi–Zhang equation]] in a field <math>h(x,t)</math> upon substituting <math>u(x,t)=-\lambda\partial h/\partial x</math>.

Okumaya devam et...
 

Geri
Üst